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Considerable effort has been focused on the realization of
nanometer-scale magnets functioning at temperatures higher than
the cryogenic range. The approach that has been undertaken
extensively is employing transition-metal clusters with a high spin
multiplicity.! Behaviors as magnets have been observed at low
temperature in several classes of transition-metal clusters, including
the most well-studied Mp clusters [Mn012(O2CR)16(H20),] "

(n =0, 1, 2;x = 3, 4)176 distorted cubane complexes with
MM ,O3X] cores?? tetranuclear vanadium complexes,P4(O,-
CR)/(L)2]"'° and iron complexes formulated as §Eg(OH);2-
(L)¢]®.1t These polynuclear metal complexes are called “single-
molecule magnets” (SMM)The origin of magnetism in the SMMs
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is the spins on individual metal ions which couple to give rise to ER
a high-spin ground state. The SMMs have an axial zero-field 293
splitting, which leads to a double-well potential with an energy :3 ]
barrier between “spin-up”§, = S and “spin-down” § = —9) 0.0

states. The height of the barriges is determined by the equation o 2 ;40 % 40 50
Uert = |ID|S, whereD is the zero-field splitting parameter. At low ) . " .
temperatures, the magnetic moment responds sluggishly to the Ac/7947€ 1- - Plots of (topy'T and (bottomqu */xw against temperaturg
p e g P _gg Yy - "whereyw', xv'', andym are in-phase-AC, out-of-phase-AC, and DC molar
external magnetic field, and therefore slow relaxation of magnetiza- magnetic susceptibilities, respectively, for a powder samplé ¢pen
tion is observed. marks) and that diluted in [R¥] -TBA™ (filled marks) measured in a 3.5
In this Communication, we report a new class of compounds G AC magnetic field oscillating at indicated frequencies.
fqnctio_ning as magnets at the single.-_molecular level by a mecha- g pome 1.
nism different from that of the transition-metal-cluster SMMs.
Recently, Ishikawa et al. reported a new method to determine
sublevel structures of ground-state multiplets of a set of isostructural
lanthanide complexes by multidimensional minimization analysis
of the magnetic susceptibility antH NMR datal? As the first
application of the method, the ligand-field parameters were
determined for dinuclear lanthanide complexes with phthalocyanine
in a study of the interaction between f-electronic systét&The
studies showed that suitable choices of ligand field can yield a o ) o )
situation where the lowest substates have a lalgealue and the Ln]° The AC magnetlc.susceptlblllty measurements were carried
energy gap between the lowest and second-lowest substates is mor@ut on a Quantum Design MPMS-XL magnetometer.
than a few hundred wavenumbers. This can be regarded as a Figure 1 shows temperature dependences of AC susceptibilities
situation similar to that of the transition-metal-cluster SMMs but 0of a polycrystalline powder sample dffixed in Apiezon N grease.
with a much higher thermal barrier betweed, and—J, substates. The relative intensity of the out-of-phase AC susceptibjlily’ to
We measured the AC magnetic susceptibilities on a series of the DC molar susceptibilityy shows a maximum at 15, 32, and
phthalocyanine double-decker complexespl[Rt - TBA* (Scheme 40 K with an AC frequency of 10, 100, and 997 Hz, respectively.
1; Ln=Tb, Dy, Ho, Er, Tm, or Yb; Pc= dianion of phthalocya- At these temperatures, each correspongifid versusT plot, where
nine; TBA™ = N(CsHo)s"). A comprehensive X-ray study of ;s the in-phase AC susceptibility, exhibits a dispersion curve.
[PeLn] - TBA™ hasi been+reported by K0|1<e, etiélOf the six To ensure that the slow magnetization relaxation behavior is an
compounds, [Pdb]"-TBA™ (1) and [PeDy] ~TBA™ (2) showed intrinsic molecular property, the measurement was carried out for
S|°_|‘f‘;] magnetllzatlon relaxatlor;j, ;Vh'lel,tthe trest dldgggéa i 1 doped in diamagnetic [R¥]--TBA™ with the molar ratio [Pg
__'he samples were prepared by a literature metmotuntica- - rp e v~ — 17, (Figure 1, filled marks). The peaks of the''/
tions were carried out by column chromatography with careful . L . . .
xm curves and dispersion ipy'T shifted to higher temperature in

attention given to the potential contaminant of nonchargeg- [Pc i o .
g P ged-[ the diluted sample. This indicates that the removal of intermolecular
 Department of Chemistry. interaction from nglghbor [REb]~ gomplexes slows down the flip
* Department of Materials Science. of the magnetic dipole. The experiments clearly show that the slow
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Figure 3. Energy andJ, values of the sublevels of the ground multiplets
of [PcLn]"TBA™ (Ln = Tb or Dy).
230 and 28 cm! with preexponential factors (dg) of 1.6 x 107
and 1.6x 1 s for 1 and2, respectively. The barrier height of
1is of the same order of magnitude as the separation between the

first- and second-lowest sublevels. This suggests the strong cor-

5 10 15 20 25 30 . . . . .

T(K) relation between the relaxation rate and the substate distribution.

Figure 2. Plots of (top)ym'T and (bottom)''/xm against temperaturg, In conclusion, the slow magnetization relaxation as a single-
for 2 (open marks) and that diluted in []~-TBA* (filled marks) molecular property irl and2 results from a mechanism different

measured in a 3.5 G AC magnetic field oscillating at indicated frequencies. from that of the transition-metal-cluster SMMs. In the new class
of magnets at the molecular level, the origin of the magnetism is
from both orbital and spin angular momentums of a single
lanthanide ion, which is placed in a ligand field, giving the lowest

sublevels a largéJ;| value and energy gaps from the rest of the

sublevels.

magnetization relaxation is the single-molecular property ofTBc,
rather than resulting from intermolecular interactions and long-range
order.

Figure 2 shows the AC susceptibility measurements2on
Temperature dependencesy@f T andywm''/ym Similar to those of
1 are seen. The peaks gfi"/ym plot are observed at 4.5, 7, and
11.5 K with an AC frequency of 10, 100, and 997 Hz, respectively. References
Diluted sample of2 in [Pc,Y]-TBA* (molar ratio [PeDy]~/
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